..

Progrès dans le recyclage et la gestion des déchets

Soumettre le manuscrit arrow_forward arrow_forward ..

Artificial Neural Network (ANN) Approach for Modeling Co2+ Ion Adsorption from Aqueous Solutions by Loess Soil Nanoparticles

Abstract

Heydartaemeh MR, Panjipour R and Karamouzian M

This study discussed the Artificial Neural Network (ANN) based classification technique is applied for the prediction of percentage adsorption efficiency for the removal of Co2+ Ion from Aqueous Solutions by Loess Soil Nanoparticles. The effect of operational parameters was performed to investigate the effect of pH, contact time, initial concentration, and temperature on adsorption process are studied to optimize the conditions for maximum removal of Co2+ Ion. The experimental data were studied in terms of kinetic characteristic of adsorption using pseudo-first-order and pseudo-second-order models, and it was found that Co2+ Ion adsorption on both adsorbent fitted well with pseudo-second-order models. The equilibrium experimental data were analyzed using Langmuir and Freundlich isotherm models. The finding indicated that Loess Soil Nanoparticles especially could be used as an appropriate adsorbent to remove potentially harmful metals such as Co2+ Ion from contaminated water.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Partagez cet article

Indexé dans

arrow_upward arrow_upward