Mojtaba Arianfar
In this study, benzyl bis (thiosemicarbazole) monomer, polymer and poly benzyl bis (thiosemicarbazone) (PBTC) /CeO2 nanocomposites were synthesized through in situ polymerization and their dielectric properties in presence of metal oxide, were investigated. Prepared samples were characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Structure and morphology of prepared nanocomposites were evaluated by Scanning Electron Microscopy (SEM) and XRD techniques. The dielectric properties were investigated in the frequency range 50 Hz - 20 MHz and the temperature range between 40°C to 150°C. The dielectric constant (ε) and dielectric loss (tan δ) is measured for different compositions of nanocomposites. Particle sizes of CeO2 were calculated to be 10 nm from Debye-Scherrer equation. FT-IR verified polymerization of monomers. The dielectric properties of cerium oxide nanocomposite were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanocomposite decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature.
Partagez cet article