..

Journal de science et d'ingénierie tissulaires

Soumettre le manuscrit arrow_forward arrow_forward ..

Fat Body Development and its Function in Energy Storage and Nutrient Sensing in Drosophila melanogaster

Abstract

Yafei Zhang and Yongmei Xi

The fat body of Drosophila has been considered as the equivalent to the vertebrate adipose tissue and liver in its storage and major metabolic functions. It is a dynamic and multifunctional tissue which functions in energy storage, immune response and as a nutritional sensor. As a major endocrine organ in Drosophila, the fat body can produce various proteins, lipids and carbohydrates, synthesize triglyceride, diacylglycerol, trehalose and glycogen in response to energetic demands. It also secretes significant proteins governing oocyte maturation or targeting nutritional signals in the regulation of the metabolism. At different developmental stages and under different environmental conditions the fat body can interplay with other tissues in monitoring and responding to the physiological needs of the body’s growth and to coordinate the metabolism of development. The Drosophila fat body exists as a model relating to human lipometabolic disease, puberty and maturation and age-related diseases such as cancer, obesity and diabetes. In this review, we summarize the fat body formation and maturation in the Drosophila life cycle and provide an overview of fat body function as an energy reservoir and nutrient sensor. We also discuss the signaling pathways and key regulatory factors involved.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Partagez cet article

Indexé dans

arrow_upward arrow_upward