..

Journal de théorie et applications du mensonge généralisé

Soumettre le manuscrit arrow_forward arrow_forward ..

A generalization of the Kantor-Koecher-Tits construction 1

Abstract

Jakob PALMKVIST

The Kantor-Koecher-Tits construction associates a Lie algebra to any Jordan algebra. We generalize this construction to include also extensions of the associated Lie algebra. In particular, the conformal realization of so(p + 1, q + 1) generalizes to so(p + n, q + n), for arbitrary n, with a linearly realized subalgebra so(p, q). We also show that the construction applied to 3 × 3 matrices over the division algebras R, C, H, O gives rise to the exceptional Lie algebras f4, e6, e7, e8, as well as to their affine, hyperbolic and further extensions.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Partagez cet article

Indexé dans

arrow_upward arrow_upward