..

Journal des sciences et de l'ingénierie des matériaux

Soumettre le manuscrit arrow_forward arrow_forward ..

Volume 9, Problème 1 (2020)

Article de révision

Ferromagnetism in (Ga, Mn) as Synthesized by Mn+ Ion Implantation and 5 MeV Si++ Ion Beam induced Recrystallization

S K Dubey

In this study, gallium arsenide samples were first implanted with 325 V Mn ke + ions for the fluence of 16 2 2 10 ions cm− × . These implanted samples were further irradiated using 2 5MeVSi + ion beams for the fluence of 16 2 1 10 ions cm− × at a substrate temperature of 350 0C for recrystallization. Super conducting quantum interface device (SQUID) measurements on asimplanted sample revealed the paramagnetic behavior. While, after irradiation with 2 5MeVSi + ions, SQUID measurements showed the hysteresis loop indicative of the ferromagnetic behavior. Ferromagnetic transition temperature after irradiation of (Ga,Mn). As samples measured from zero field cool and field cool measurements were found to be 292 Kelvin.

article de recherche

The Assembly and Classification of the Elements Using the Roberts-Janet Nuclear Periodic Table

John O Roberts

A framework and surprisingly coherent analysis of the elements is presented using the Roberts-Janet table derived by inverting the Periodic Table coupled with the Quantum Mechanical Table established using the mathematics of the Standard Model and groups U (1) x S U (2) x S U (3). Having already identified in previous articles a one to one mapping between the two tables, this article seeks to consolidate such a framework to include nucleosynthesis by presenting the appearance of the highly stable numbers of neutrons and protons – magic numbers within the Nuclear Shell Model – as a consequence of the framework itself. The article also seeks to illustrate similarities between the electron structure of individual elements in condensed matter (Periodic Table) and the structure of neutrons and protons in plasma during fusion (Nucleosynthesis) and its possible extension to the Standard Model and beyond. Phase changes together with suitable boundary conditions lead to the hypothesis that all elements ultimately become metallic.

Indexé dans

arrow_upward arrow_upward