Olusola Adelowotan, Emmanuel Ayodele Oluyemi and Oladotun Wasiu Makinde
This study evaluated the bioremediation potential of klebsiella species. Different strains were isolated from selected polluted soil using pour plate method and were subjected to various morphological and biochemical tests. The bioaccumulation experiment was done using selected metal salt solution. Heavy metals polluted soil samples were subjected to acid extraction (HCl:HNO3, 3:1 v/v) before the addition and after the removal of each specie to evaluate the residual metal concentrations after remediation using atomic absorption spectrometer. Chemical functional groups present in each species were identified using Fourier Transform Infrared (FT -IR) analysis. The percentage removal efficiency by each strain of metal ion from their salt solution show Klebsiella pneumoniae with 67.19% of Cd, Klebsiella edwardsii with 27.56, 58.30% of Cr and Ni, Klebsiella ozoenae with 67.71, 62.09% of Pb and Cu ions removal. Remediation of polluted soil samples by each Klebsiella species shows effective percentage reduction of metal concentrations in each sample. The Fourier Transform Infrared (FT-IR) analysis of these species affirmed the occurrence of (-OH stretch), (Sp3 –CH stretch), (Sp2 –CH stretch), (C-O stretch), (N-O stretch), (C-Br/Cl/F stretch) which were responsible for both absorption and adsorption mechanisms. The study concluded that Klebsiella species were effective in reducing heavy metals concentration in polluted soil and would be a good alternative to conventional methods.
Partagez cet article