Gangcai Liu, Shuhan Du, Sili Peng, Genxu Wang
An important component of the water cycle in ecological systems, rainfall interception by virgin forests was here calculated from gross precipitation minus through fall and stem flow. The through fall measurement system was designed on the basis of a 3 m long trough mounted beneath the canopy and able to operate successfully under a range of rainfall conditions. Stem flow was measured using spiral collars consisting of a split plastic hose attached to sampled trees, with gross precipitation measured in an open area via a tipping-bucket rain gauge. This study was carried out to evaluate rainfall interception and distribution patterns of gross precipitation in two contrasting rainforest types (coniferous and broadleaved/coniferous mixed) in the Mount Gongga area on the eastern fringe of Tibet, China, from 2008 to 2009. Net precipitation was found to be primarily composed of through fall, while stem flow contributed less than 0.5% (0.1% and 0.4% in conifer and mixed forest, respectively) to total gross precipitation (GP) and was thus negligible in both forest types. The difference in the interception loss fraction between conifer and mixed forest was greater than 30%, with the interception loss of the former apparently more than that of the latter mainly due to the increased presence of small droplets produced by coniferous leaves. Additionally, interception loss in conifer forest was more dependent on rainfall than that in mixed forest. In contrast, through fall and stem flow exhibited the opposite pattern, likely attributable to a through fall lag of 8 to 10 h after rainfall in mixed forest but not in conifer forest.
Partagez cet article