..
Soumettre le manuscrit arrow_forward arrow_forward ..

Polignac's Conjecture with New Prime Number Theorem

Abstract

YinYue Sha

There are infinitely many pairs of consecutive primes which differ by even number En.Let Po(N, En) be the number of Polignac Prime Pairs (which difference by the even integer En) less than an integer (N+En), Pei be taken over the odd prime divisors of the even integer En less than √(N+En), Pni be taken over the odd primes less than √(N+En) except Pei, Pi be taken over the odd primes less than √(N+En), then exists the formulas as follows:

Po(N, En) ≥ INT {N × (1-1/2) × Π (1-1/Pei) × Π (1-2/Pni)} - 1

≥ INT {Ctwin × Ke(N) × 2N/(Ln (N+En))^2} - 1

Po(N, 2) ≥ INT {0.660 × 1.000 × 2N/(Ln (N+2))^2} - 1

Π (Pi(Pi-2)/(Pi-1)^2) ≥ Ctwin=0.6601618158…

Ke(N)=Π( (1-1/Pei)/(1-2/Pei))=Π( (Pei-1)/(Pei-2)) ≥ 1

where -1 is except the natural integer 1.

Avertissement: Ce résumé a été traduit à l'aide d'outils d'intelligence artificielle et n'a pas encore été examiné ni vérifié

Partagez cet article

Indexé dans

arrow_upward arrow_upward