Victor Soares Cavalcante Costa, Rodolfo Toledo Filgueiras, Bárbara Bruna Muniz Figueiredo, Luciano Mazzoccoli, Silvia Helena Cardoso, Maria Christina Marques Nogueira Castanon, Giovanni Wilson Amarante, Mauro Vieira de Almeida, Nádia Resende Barbosa Raposo and Henrique Couto Teixeira
Thalidomide is an immunomodulatoryagent with anti-inflammatory activity, however it may also cause serious side effects. New compounds derived from thalidomide effective in modulating inflammatory responses and having an improved safety profile is being investigated. In this study, two thalidomide analogs, GI-16 and SC-15, were evaluated using the carrageenan-induced paw swelling and the lipopolysaccharide (LPS)-induced lung inflammation in mice. Acute and sub-chronic toxicity of the compounds were investigated in blood and serum samples of Wistar rats by measurements of hematological and biochemical parameters. Histopathological analyses were conducted to assess inflammatory cell infiltration in heart, liver and kidneys. Our results show that treatment with GI-16 and SC-15 reduced the carrageenan-induced paw edema over a 24 hour period. GI-16 and SC-15 treatments inhibited LPS-induced TNF-α and IL-6 in lung homogenates. In contrast, thalidomide and SC-15 enhanced IL-10 (p<0.05). Histopathological analysis showed reduction in LPS–induced lung inflammation after treatment with GI-16 and SC-15. Wistar rats treated with the compounds did not develop any clinical signs of acute or sub-chronic toxicity. No mortality occurred in both control and treated animals and body weight gain over time was similar in all groups. In addition, no significant alterations were detected in enzyme activity of aspartate aminotransferase, alanine aminotransferase or alkaline phosphatase, and no significant alterations were found in glucose, urea, creatinine, total cholesterol or triglyceride levels. GI-16 and SC-15 treatments did not modify hemoglobin, red and white blood cell count, and sections of liver, kidneys and heart tissues showed no pathological alterations under light microscopy. In conclusion, the remarkable in vivo anti-inflammatory activity and low toxicity of SC-15 and GI-16 makes them promising drug candidates to treat inflammatory conditions.
Partagez cet article