Anandalakshmi K and Venugobal J
The present paper focuses on the synthesis of silver nanoparticles using with different leaf extract concentrations of Vitex negundo. The biosynthesized nanoparticles were characterized by UV-vis absorption spectrophotometry, fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray, atomic force microscopy, transmission electron microscopy, photoluminescence and zeta potential techniques. The formation of silver nanoparticles was confirmed by the surface plasmon resonance absorption peak at 423 nm in UV-vis absorption spectra of the synthesized silver nanoparticles. The fourier transform infrared spectroscopy indicates flavonoids as a potential reduced agents. Field emission scanning electron microscopy shows the synthesized silver nanoparticles are in spherical shape. Energy dispersive X-ray spectroscopy shows the strong peak belongs to silver, and it confirms the formation of Ag NPs. X-ray diffraction spectra of synthesized silver nanoparticles exhibit they are in face centered cubic crystalline structure. The photoluminescence spectra of synthesized silver nanoparticles show their emission peak at 489-481 nm and the emission intensity is proportional to the different concentrations of leaf extract. The spherical shaped silver nanoparticles are observed by atomic force microscopy technique. The zeta potential value is observed at -13.5 mV, which shows the synthesized silver nanoparticles are incipient instability. The antimicrobial activity of the synthesized nanoparticles is studied using the disc diffusion method, which indicates that both Gram positive and Gram negative microorganisms have been affected by the silver nanoparticles. The observed antibacterial activity could be find important applications in medicine, biology and industry.
Partagez cet article